

1. SUBSTRUCTURE

Constant	Value	Explanation
Amount of spray mixture needed per square meter	5 liters/m²	Total volume of mixed anti-termite spray applied over each square meter of surface area.
Concentrate content in each liter of spray mixture	0.01 liters/L	Volume of anti-termite chemical concentrate in each liter of spray mixture. Equivalent to 0.1 liters per 10 liters of mixture.
Coverage area of one roll of damp-proof membrane (DPM)	56 m²	Standard membrane roll size (width: 1 meter, length: 56 meters).
Waste allowance factor	1.10	Accounts for 10% extra material to cover wastage and overlaps.
Density of hardcore rock fill	1500 kg/m³	Bulk density used for weight calculations.
Density of murram or stone-dust filling	1500 kg/m³	Bulk density used for weight calculations.
Maximum thickness for hardcore area calculations	0.30 meters (300 mm)	Standard thickness limit when estimating volumes from area.

Calculation Procedures

1.1 Anti-Termite Treatment by Spraying

Termiticide Type	Formula for Concentrate (L)	Equivalent Simplified Formula	Notes
Premise	$(\text{Area} \div 156) \times 1.1$	$0.00705 \times \text{Area}$	1 litre per 156 m ² , +10% waste allowance
Termidor	$(5 \times \text{Area} \div 400) \times 1.1$	$0.01375 \times \text{Area}$	5× factor, divided by 400, +10% allowance
Gladiator	$(9 \times \text{Area} \times 0.025) \times 1.1$	$0.2475 \times \text{Area}$	9× factor × 2.5%, +10% allowance
Andrex	$(\text{Area} \div 13) \times 1.1$	$0.0846 \times \text{Area}$	1 litre per 13 m ² , +10% allowance
Undertaker	$(\text{Area} \div 13) \times 1.1$	$0.0846 \times \text{Area}$	Same as Andrex
Other / Unspecified	$(5 \times \text{Area} \times 0.01)$	$0.05 \times \text{Area}$	Default fallback (1% of total mix)

1.2 Damp-Proof Membrane (DPM) Sheets

Steps:

1. **Base Rolls (before waste)**

$$\text{Base Rolls} = \text{Area (m}^2\text{)} \div 56 \text{ m}^2/\text{roll}$$

2. **Total Rolls (including waste)**

$$\text{Total Rolls} = \text{Base Rolls} \times 1.10$$

1.3 Hardcore Rock Filling

Steps:

1. **If in CM,**

Use the given volume directly in calculations.

2. **If in S.M, check the thickness**
3. Volume (m^3) = Area (m^2) × Thickness (m)
4. **Mass (kg):**
Mass (kg) = Volume (m^3) × 1500 kg/ m^3 × 1.10
5. **Convert to tons:**
Tons = Mass (kg) ÷ 1000

1.4 Murram or Stone-Dust Filling

Steps:

Follow the same calculation steps as for hardcore filling (**Section 1.3**), but use the density value for murram or stone-dust (**1500 kg/ m^3**).

CONCRETE WORKS

Constants and Reference Values

Constant	Value	Explanation
Density of cement	1440 kg/m^3	Used to calculate the mass of cement required.
Density of sand	1600 kg/m^3	Used to calculate the mass of sand required.
Density of ballast	1800 kg/m^3	Used to calculate the mass of ballast required.
Bulkage and shrinkage factor	1.52	Multiplier to account for the change in volume when converting dry materials to mixed concrete.
Waste allowance factor	1.10	Adds 10% extra material for wastage.

Weight of one cement bag **50 kg** Standard weight for bag count calculations.

Calculation Procedures

Determine the Volume of Concrete Required

1. **If volume is already in cubic meters:** Use directly.

2. **If given area and thickness:**

$$\text{Thickness (m)} = \text{Thickness (mm)} \div 1000$$

$$\text{Volume (m}^3\text{)} = \text{Area (m}^2\text{)} \times \text{Thickness (m)}$$

3. **If given length and cross-section:**

Convert dimensions to meters:

$$\text{Volume (m}^3\text{)} = \text{Length (m)} \times \text{Width (m)} \times \text{Depth (m)}$$

Adjust for Bulkage, Shrinkage, and Waste

$$\text{Adjusted Volume (m}^3\text{)} = \text{Volume} \times 1.52 \times 1.10$$

Split into Cement, Sand, and Ballast Based on Mix Ratio

1. **Total Parts:**

$$\text{Total Parts} = \text{Cement Ratio} + \text{Sand Ratio} + \text{Ballast Ratio}$$

2. **Material Volumes:**

$$\text{Cement Volume (m}^3\text{)} = (\text{Cement Ratio} \div \text{Total Parts}) \times \text{Adjusted Volume}$$

$$\text{Sand Volume (m}^3\text{)} = (\text{Sand Ratio} \div \text{Total Parts}) \times \text{Adjusted Volume}$$

$$\text{Ballast Volume (m}^3\text{)} = (\text{Ballast Ratio} \div \text{Total Parts}) \times \text{Adjusted Volume}$$

Convert Volumes to Mass or Bag Count

1. **Cement:**

$$\text{Mass (kg)} = \text{Cement Volume} \times 1440$$

$$\text{Bags} = \text{Mass (kg)} \div 50$$

2. **Sand:**

$$\text{Mass (tonnes)} = (\text{Sand Volume} \times 1500) \div 1000$$

3. **Ballast:**

$$\text{Mass (tonnes)} = (\text{Ballast Volume} \times 1600) \div 1000$$

Summary Table of Formulas

Material	Formula	Notes
Adjusted Volume (m ³)	Volume × 1.52 × 1.10	Accounts for bulkage, shrinkage, and waste
Cement Volume (m ³)	(Cement Ratio ÷ Total Parts) × Adjusted Volume	Based on mix ratio
Sand Volume (m ³)	(Sand Ratio ÷ Total Parts) × Adjusted Volume	Based on mix ratio
Ballast Volume (m ³)	(Ballast Ratio ÷ Total Parts) × Adjusted Volume	Based on mix ratio
Cement Mass (kg)	Cement Volume × 1440	Converts volume to mass
Cement Bags	Cement Mass ÷ 50	Standard 50 kg bags
Sand Mass (tonnes)	(Sand Volume × 1500) ÷ 1000	Converts volume to tonnes
Ballast Mass (tonnes)	(Ballast Volume × 1600) ÷ 1000	Converts volume to tonnes

FORMWORK

Constants and Basic Measures

Constant / Conversion	Value	Explanation
1 metre in feet	3.28084 ft	Use to convert metres to feet where required.
Marine plywood sheet coverage	2.97 m² (8 ft × 4 ft)	Area covered by one standard marine plywood sheet.
Timber props required	4 props per m²	Rule of thumb for supporting formwork.
Nails requirement	1 × 50 kg bag per 200 m²	Quantity of nails per area before waste.
Waste allowance factor	1.10	Add 10% extra for wastage and overlaps.

Area Determination

- **If area is given in square metres (m²):** use the quantity directly.
- **If length (linear metres) and width (given in mm) are provided:**

1. Convert width to metres: Width (m) = Width (mm) \div 1000.
2. Calculate area: Area (m²) = Length (m) \times Width (m).

Calculation Procedures

A. Timber Props

- Props required = Area (m²) \times 4 props/m² \times 1.10 (waste)

B. Nails

- Nail bags required = (Area (m²) \div 200 m² per bag) \times 1.10 (waste)
- Report the result as a decimal; when ordering from suppliers that sell only whole 50 kg bags, round up at the time of purchase.

C. Formwork (Sawn Timber) — using 6 in \times 1 in boards (0.15 m width)

1. Board length (m) = Area (m²) \div 0.15 m
(This gives total linear metres of board required.)
2. Convert board length to feet if needed: Board length (ft) = Board length (m) \times 3.28084.
3. Apply waste allowance: Board length with waste = Board length \times 1.10.

D. Marine Plywood Sheets

- Number of sheets = (Area (m²) \div 2.97 m² per sheet) \times 1.10 (waste)
- Report the exact decimal number; when ordering, round up to the next whole sheet if supplier sells only whole sheets.

6.5 Example Calculations

Given: Area = 50.00 m²; Use marine plywood formwork.

1. Props required = $50.00 \times 4 \times 1.10 = 220.00$ props (report 220 props)
2. Nail bags required = $(50.00 \div 200) \times 1.10 = 0.275$ bags (report 0.28 bags; **order 1 bag** if supplier sells whole 50 kg bags)
3. Number of plywood sheets = $(50.00 \div 2.97) \times 1.10 = 18.52$ sheets (report 18.52 sheets; **order 19 sheets** when purchasing whole sheets)

Reinforcement and BRC

Rebars (Steel Bars)

Step 1: Calculate Total Length and Number of Bars

Determine Diameter – Identify the bar diameter (e.g., 8 mm, 16 mm) from specifications.

Density Table (kg/m):

Diameter (mm)	Density (kg/m)
8	0.395
10	0.617
12	0.889
16	1.580
20	2.470
25	3.858

Formulas:

- **Total Length (m) = Total Weight (kg) ÷ Density (kg/m)**
- **Number of Bars = (Total Length ÷ 12.192 m) × 1.10**
(12.192 m = 40 ft standard bar length; 1.10 accounts for 10% waste)

Binding Wire:

- **Binding Wire (kg) = Total Weight (kg) × 0.012 × 1.10**

Example:

- **Weight = 5000 kg, Diameter = 16 mm**
- **Density = 1.580 kg/m**
- **Total Length = $5000 \div 1.580 \approx 3164.56$ m**
- **Bars = $(3164.56 \div 12.192) \times 1.10 \approx 285$ bars**
- **Binding Wire = $5000 \times 0.012 \times 1.10 = 66$ kg**

BRC Mesh (British Reinforcement Concrete Mesh)**Dimension Value**

Width 2.4 m

Length 48 m

Area 115.2 m²

Step 3: Formula for Rolls

- **Number of Rolls = (Area to cover ÷ 115.2) × 1.10**
(1.10 accounts for 10% waste due to overlaps, cuts, and errors)

Example:

- **Area = 500 m², Mesh = A142**
- **Rolls = $(500 \div 115.2) \times 1.10 \approx 4.77 \rightarrow$ order 5 rolls**
-

Final Summary Table

Item	Formula / Details	Example
Rebar Bars	$(\text{Weight} \div \text{Density}) \div 12.192 \times 1.10$ 285 bars (16 mm, 40 ft)	
Binding Wire Weight	$\times 0.012 \times 1.10$ (kg)	66 kg
BRC Rolls	$(\text{Area} \div 115.2) \times 1.10$	5 rolls (A142)

Walling

Constants

Material / Property	Value
Damp proof course roll coverage	7 m ² per roll (1 m × 7 m)
Quarry stone	13.68 ft of stone per m ²
Machine-cut stones	12 stones per m ²
Hoop iron weight	0.6 kg per m ²
Hoop iron roll weight	15 kg
Cement density	1440 kg/m ³
Sand density	1600 kg/m ³
Mortar volume per m ² @ 100 mm	0.011 m ³

Mortar volume per m² @ 150 mm 0.016 m³

Mortar volume per m² @ 200 mm 0.0213 m³

1. Damp Proof Course (DPC)

- **Formula:**

- Area = length × width (in meters)
- Rolls required = ((Area ÷ 7) × 1.10)

2. Quarry Stone Walling

- **Formulas:**

- Stones = (Area × 13.68 × 1.10) feet of rough quarry stone (9"×9")
- Mortar Volume = Area × 0.0213 m³
- Cement Bags = ((Mortar Volume × (cement_ratio / total_ratio) × 1440 ÷ 50) × 1.10)
- Sand (tonnes) = ((Mortar Volume × (sand_ratio / total_ratio) × 1600 ÷ 1000) × 1.10, 2)
- Hoop Iron Rolls = ((Area × 0.6 ÷ 15) × 1.10)

3. Machine-Cut Stone Walling

- **Formulas:**

- Stones = (Area × 14)
- Mortar Volume = Area × Volume_Factor(thickness)
- Cement & Sand: same formula as in Quarry Stone Walling (default ratio 1:3)
- Hoop Iron Rolls = ((Area × 0.6 ÷ 80) × 1.10)

4. Eaves Filling

- **Formulas:**
 - Height (mm), default **400 mm**, convert to meters: $\text{Area} = \text{length} \times \text{height}$
 - Thickness (mm), default **200 mm**
 - Stones = $(\text{Area} \times 12 \times 1.10)$
 - Mortar Volume, Cement, Sand: same as in Quarry Stone Walling
 - Hoop Iron Rolls = $(\text{Area} \times 0.6 \div 80)$

ROOFING

Truss Materials Calculation Guideⁱ

Constants and Conversion Factors:

1. **Metre to Feet:**
2. **Waste Allowance:** Always add **10% extra** to account for waste and cutting.
3. **Quantity Type:** Quantities must be given in **linear metres** (length only).

Timber Section Size Mapping (mm → inches)

Section (mm) Size (inches)

250 × 50 10 × 2

250 × 25 10 × 1

225 × 50 9 × 2

225 × 25 9 × 1

200 × 50 8 × 2

200 × 25 8 × 1

175 × 50 7 × 2

175 × 25 7 × 1

150 × 50 6 × 2

150 × 25 6 × 1

100 × 50 4 × 2

100 × 25 4 × 1

75 × 75 3 × 3

75 × 50 3 × 2

75 × 25 3 × 1

50 × 50 2 × 2

50 × 25 2 × 1

Step-by-Step Calculation:

- 1. Confirm quantity is in metres of timber length.**
- 2. Read the timber section dimensions in millimetres from the description.**
- 3. Match to inch sizes** using the table above (or calculate using $mm \div 25.4$).
- 4. Convert length to feet:**
- 5. Add waste allowance:**

Roof Covering

Constants and Typical Values

Description	Value	Notes
Waste factor (includes 10% extra)	1.10	Apply to all calculated quantities to cover waste and cuts.
Typical sheet length (metres)	2.50 m	Common length used for profile and metal sheets; confirm with supplier.
Tiles per square metre (typical)	10 tiles/m²	Typical for many clay and concrete tiles; confirm by tile type.
Bundle coverage (square metres)	3 m² / bundle	Typical bundle coverage for asphalt or some tile systems; confirm by product.
Nails per sheet (typical)	12 nails / sheet	Used for profile and similar sheets.
Nails per bag	120 nails / bag	Standard loose nail bag size (confirm locally).
Screws per square metre (typical)	4 screws / m²	Typical for some stone-coated systems; confirm by supplier.
Typical sheet width (metres)	Varies by type	Use manufacturer specification for each profile.

General Waste Rule

All calculated quantities below include a × Waste factor (1.10) step. Report the precise calculated result, then round up to the supplier unit (whole sheets, bundles, screws boxes, etc.) when ordering.

Ridgecaps & Valleys

Formula:

Number of pieces = (Length ÷ Sheet length) × Waste factor

- Length is the total linear length of ridge or valley to be covered (metres).
- Sheet length use the typical value (2.50 m) or the actual sheet length.

Clay Roof Tiles

Formula:

Number of tiles = (Area × Tiles per m²) × Waste factor

- Tiles per m² use the typical value (10 tiles/m²) or the manufacturer's figure.

Stone-Coated Steel Tiles

Typical base values used in these calculations:

- Tiles per m² = **10**
- Bundle coverage = **3 m²**
- Nails per sheet = **12**
- Nails per bag = **120**
- Screws per m² = **4**
- Sheet width = **Varies by type**

Formula (tiles):

Number of tiles = (Area × Factor) × Waste factor

- Use **Factor = 2.2** for Decra products.
- Use **Factor = 2.0** for many other stone-coated profiles.

Notes: confirm exact factor and fixing schedule from the product datasheet.

Asphalt Shingles

Formula:

Number of bundles = (Area ÷ Bundle coverage) × Waste factor

- Bundle coverage typically **3 m² / bundle** but confirm with the manufacturer.

Profile Sheets (Box/IT4-6 and similar)

Formulas:

Number of sheets = $(\text{Area} \div (\text{Sheet width} \times \text{Sheet length})) \times \text{Waste factor}$

Number of nails = $(\text{Number of sheets} \times \text{Nails per sheet}) \times \text{Waste factor}$

Number of nail bags = Number of nails \div Nails per bag

- Use actual Sheet width and Sheet length from the product specification when available.
- Report nail quantities as exact numbers, then round to whole bags for ordering.

Corrugated / Versatile / Roman Sheets

Use the same formulas as **Profile Sheets** above, substituting the appropriate sheet width and sheet length for each sheet type.

Polycarbonate Sheets

Formulas:

Number of sheets = $(\text{Area} \div (\text{Sheet width} \times \text{Sheet length})) \times \text{Waste factor}$

Number of screws = $(\text{Area} \times \text{Screws per m}^2) \times \text{Waste factor}$

- Screws per m^2 should be taken from the supplier's fixing guide (typical values vary by panel profile and wind load).

Plaster & Render

Constants

- **Cement density:** 1440 kg/m³
- **Lime density:** 2210 kg/m³
- **Sand density:** 1500 kg/m³
- **Waste factor:** +10% on all materials
- **Bag sizes:**
 - Cement: 50 kg
 - Lime: 25 kg
- **Default thickness:** 15 mm (applied only to three-part mixes if not specified)

Unit Handling

1. **SM/SQM/M2:** Area = Qty

2. **LM:** Area = Qty × (upper width in mm / 1000)

Material Calculations

Two-Part Mix (cement : sand)

Total ratio = 1 + sand_ratio

Cement volume (m³) = Volume_m3 × (1 / Total ratio)

Sand volume (m³) = Volume_m3 × (sand_ratio / Total ratio)

Cement mass (kg) = Cement volume × 1440 × 1.10 (waste)

Sand mass (kg) = Sand volume × 1500 × 1.10 (waste)

Cement bags = ceil(Cement mass × 1.1 / 50)

Sand tonnes = (Sand mass × 1.1) / 1000

Three-Part Mix (cement : lime : sand)

Formulas:

- **Total ratio** = 1 + lime_ratio + sand_ratio
- **Cement volume (m³)** = Volume_m3 × (1 / Total ratio)
- **Lime volume (m³)** = Volume_m3 × (lime_ratio / Total ratio)
- **Sand volume (m³)** = Volume_m3 × (sand_ratio / Total ratio)

Mass & Waste:

- Cement mass (kg) = Cement volume × 1440 × 1.10 (waste)
- Lime mass (kg) = Lime volume × 2210 × 1.10 (waste)
- Sand mass (kg) = Sand volume × 1500 × 1.10 (waste)

Final Quantities:

- Cement bags = ceil(Cement mass / 50)
- Lime bags = ceil(Lime mass / 25)
- Sand tonnes = Sand mass / 1000

Tiles

Tiles per Box

Size (mm) Tiles/Box

200×300 25

250×400 15

300×300 17

400×400 12

300×600 7

450×450 6

600×600 4

450×900 3

250×750 6

265×800 11

300×1200 2

300×1500 3

Material Calculations

Steps:

1. Total Tiles Needed:

2. $\text{total_tiles} = (\text{Qty} / \text{tile_area_m2}) \times 1.10$

3. Boxes Needed:

4. $\text{num_boxes} = (\text{total_tiles} / \text{tiles_per_box})$

5. Adhesive Required:

6. $\text{adhesive_kg} = (\text{Qty} \times 10) \times 1.10$

7. Grout Required:

8. $\text{grout_kg} = (\text{Qty} \times 0.5) \times 1.10$

Painting Material Calculations Guide

Coverage Assumptions

- **Standard paint coverage:** 15 m² per litre per coat
- **Skim filler coverage:** 10 m² per 25 kg bag
- **Waste factor:** 10% extra added to all calculations

Varnish

Formulas:

- Base varnish (3 coats) = $(\text{Area} \div 15) \times 3$
- Varnish litres = $\text{Base varnish} \times 1.10$
- Thinner litres = $(\text{Base varnish} \times 0.10) \times 1.10$

Example:

- For 100 m²: $100 \div 15 \approx 6.67$ litres per coat

- Total (3 coats) = 20.01 litres base, \approx 22 litres with waste
- Thinner = 2 litres base, \approx 2.2 litres with waste

Final Output:

- **22 litres clear varnish**
- **2.2 litres spirit thinner**

Oil-Based Paint (Gloss)

Formulas:

- Primer (if specified) = $(\text{Area} \div 15) \times 1.10$
- Undercoat = $(\text{Area} \div 15) \times 1.10$
- Gloss paint (2 coats) = $(\text{Area} \div 15) \times 2 \times 1.10$
- Thinner = $((\text{Area} \div 15) \times 2 \times 0.10) \times 1.10$

Final Output:

- **17.6 litres gloss paint**
- **8 litres undercoat**
- **1.8 litres thinner**
- **Optional: 8 litres primer (acrylic)**

Interior Emulsion Paint

Formulas:

- Undercoat litres = $(\text{Area} \div 15) \times 1.10$
- Topcoat litres (2 coats) = $(\text{Area} \div 15) \times 2 \times 1.10$
- Skim filler bags (25 kg) = Round up($(\text{Area} \div 10) \times 1.10$)

Example:

- For 90 m²: Undercoat \approx 6.6 litres, Topcoat \approx 13.2 litres, Skim filler = 10 bags

Final Output:

- **6.6 litres undercoat**

- **13.2 litres silk vinyl paint**
- **10 bags skim filler (25 kg)**

Exterior Weather-Resistant Paint

Formulas:

- Undercoat litres = (Area ÷ 15) × 1.10
- Topcoat litres = (Area ÷ 15) × 1.10

Final Output:

- **11 litres undercoat**
- **11 litres weather-resistant paint**